skip to main content


Search for: All records

Creators/Authors contains: "Sarazin, Craig L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We measure the local correlation between radio emission and Compton-y signal across two galaxy clusters, Abell 399 and Abell 401, using maps from the Low Frequency Array and the Atacama Cosmology Telescope  + Planck. These data sets allow us to make the first measurement of this kind at ∼arcmin resolution. We find that the radio brightness scales as Fradio ∝ y1.5 for Abell 401 and Fradio ∝ y2.8 for Abell 399. Furthermore, using XMM–Newton data, we derive a sublinear correlation between radio and X-ray brightness for both the clusters ($F_{\mathrm{radio}} \propto F_{\rm X}^{0.7}$). Finally, we correlate the Compton-y and X-ray data, finding that an isothermal model is consistent with the cluster profiles, $y \propto F_{\rm X}^{0.5}$. By adopting an isothermal–β model, we are able, for the first time, to jointly use radio, X-ray, and Compton-y data to estimate the scaling index for the magnetic field profile, B(r) ∝ ne(r)η in the injection and re-acceleration scenarios. Applying this model, we find that the combined radio and Compton-y signal exhibits a significantly tighter correlation with the X-ray across the clusters than when the data sets are independently correlated. We find η ∼ 0.6–0.8. These results are consistent with the upper limit we derive for the scaling index of the magnetic field using rotation measure values for two radio galaxies in Abell 401. We also measure the radio, Compton-y, and X-ray correlations in the filament between the clusters but conclude that deeper data are required for a convincing determination of the correlations in the filament.

     
    more » « less
  2. Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts. 
    more » « less
  3. ABSTRACT Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev–Zel’dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary – largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper, we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source’s flux density, spectral index, and angular separation from the cluster’s centre affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE-selected catalogue is inherently biased. We confirm this by comparing the ACT tSZE catalogue with optically and X-ray-selected cluster catalogues. There is a strong case for a large, high-resolution survey of clusters to better characterize their source population. 
    more » « less
  4. To investigate the effect of feedback from active galactic nuclei (AGN) on their surrounding medium, we study the diffuse X‐ray emission from galaxy groups and clusters by coupling the Astrophysical Plasma Emission Code (APEC) with the cosmological hydrodynamic simulation involving AGN feedback. We construct a statistical sample of synthetic Chandra X‐ray photon maps to observationally characterize the effect of AGN on the ambient medium. We show that AGN are effective in displacing the hot X‐ray emitting gas from the centers of groups and clusters, and that these signatures remain evident in observations of the X‐ray surface brightness profiles.

     
    more » « less
  5. null (Ed.)
  6. ABSTRACT

    We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev–Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the 1.65 arcmin resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by 37 arcmin, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at >5σ. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm 0.7)\times 10^{14}\, \mathrm{M}_{\odot }$ associated with the filament, comprising about 8 per cent of the entire Abell 399–Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim }1.9\, \mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm 0.24)\times 10^{-4}\, \mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\, \mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution (12.7 arcsec effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope.

     
    more » « less